

Request for Proposal (RFP)

Architectural Services for Mana Academy A Utah Charter School Facility Renovation and Expansion

SELECTION SCHEDULE

Notice of RFP: February 6, 2026 – February 19, 2026 published on the Utah Public Procurement Place and the school's website www.themanaacademy.org

Submission Deadline: February 19, 2026 by 3:00 pm Mountain Time to Anapesi Kaili Anapesi@TheManaAcademy.org **AND** Chad Borup Chad@RoundTableFunding.org Proposals must be submitted in compliance with Section V of this RFP.

Questions/Inquiries February 6, 2026 – February 16, 2026 (please submit directly to emails above). Inquiries and answers may be distributed to the entire group of responders.
*No other members of the school should be contacted concerning this Request For Proposal during the selection process. Failure to comply with this requirement may result in disqualification.

Review of proposals: February 19, 2026 through February 27, 2026

Recommendation to Board: March 6, 2026

Anticipated Award Date: March 13, 2026

1. Introduction and Notice

- A) MANA ACADEMY (the "School"), a Utah public charter school, invites qualified and licensed architectural firms to submit proposals to provide comprehensive architectural and related professional services for the renovation and expansion of a school facility. The School currently has ~300 students in grades k-12. The School does not charge tuition – they are funded like any other public school based on the number of students attending the school.
- B) TERM OF CONTRACT. The School is seeking an Architectural firm to provide services to help with the renovation, and addition to a newly acquired property. The exact size and scope of the project is yet to be determined.
- C) The School intends to select the proposer whose response is determined to be the most advantageous to the School, considering qualifications, experience, approach, schedule, and fee.

2. Project Overview

The School is in the process of acquiring an existing building located at 2479 Lake Park Blvd. West Valley City, which has approximately **40,000 square feet**, which will be renovated and converted for use for 525 students in grades K-12. In addition, the project includes the design and construction of a new **8,000-10,000 square foot gymnasium/cafeteria and kitchen facility** to be constructed on the site. The project will need to include the following:

- 26 classrooms
- Breakout rooms (near the classrooms for upper grades)
- Open space for the upper grades to gather
- 6 Admin offices spread throughout the building
- SRO office near entrance
- Conference room
- Nurse room with 2 beds
- 1 large SPED room with 4 smaller break-out rooms
- Library ~2000 sq ft with several break-out rooms adjoining it

Where it makes sense, The School would prefer to leave the existing rooms/offices as they currently are.

The selected Architect will be responsible for providing full architectural services from pre-design through construction administration, including all work necessary to obtain

approvals and permits from the **Utah State Board of Education (USBE)** and other Authorities Having Jurisdiction.

It is anticipated that construction will begin **no later than July 21**. Proposers must clearly identify their ability to meet this schedule. The School can stay in their current location until the project is completed, however, The School would like to use the new space as soon as practicable.

3. Scope of Services

The Architect shall provide all professional services necessary to deliver a complete, code-compliant, and constructible project, including but not limited to the following:

3.1 Pre-Design and Due Diligence

- Design necessary seismic upgrades
- Review existing building conditions and available documentation
- Site evaluation and constraints analysis
- Coordination with School representatives and consultants
- Assistance with project budgeting and phasing strategies

3.2 Design Services

- Schematic Design
- Design Development
- Construction Documents
- Coordination of structural, mechanical, electrical, plumbing, fire protection, and civil engineering disciplines
- Design of renovation to existing building for educational use
- Design of new gymnasium/cafeteria and kitchen addition

3.3 Permitting and Approvals

- Preparation and submission of all documents required for:
 - Utah State Board of Education (USBE) approval
 - City Site Plan Approval
 - Fire marshal review and approval
 - Health department approvals
- Responding to plan review comments and securing final approvals

3.4 Bidding and Construction Administration

- Review of submittals and shop drawings
- Responses to RFIs
- Periodic site observations
- Review of pay applications
- Submitting periodic reports to USBS as necessary
- Substantial and final completion support

4. Schedule Requirements

Proposers shall include a detailed project schedule identifying:

- Estimated duration for each design phase
- Estimated timeframe to obtain USBE and local permits
- Earliest achievable construction start date

The School's objective is to commence construction **no later than July 21**. If schedule allows, the School prefers to begin work on the Gymnasium as early as May. For this to happen, The School would need permits for the full project prior to starting any work. The School intends to have a General Contractor selected by April. The School will need floor plan schematics close to complete no later than April 10, 2026 so they can be provided to Contractors as part of the procurement process. Proposers must clearly state any assumptions or constraints that impact schedule.

5. Proposal Submission Requirements

Proposals shall be concise yet sufficiently detailed to allow for a thorough evaluation. At a minimum, proposals must include the following sections:

5.1 Firm Information and Qualifications

- Firm name, address, and primary contact
- Utah architectural license information
- Description of firm size and organizational structure
- Identification of key personnel assigned to the project

5.2 Relevant Experience

- Experience with Utah public charter schools (REQUIRED)
- Experience with renovations of existing buildings for school use
- Experience obtaining approvals from USBE

- Descriptions of at least three (3) relevant projects, including:
 - Project size and scope
 - Construction cost
 - Role of the firm
 - Client reference contact information

5.3 Project Approach

- Understanding of the project and key challenges
- Proposed design and coordination approach
- Strategy for quickly permitting and any regulatory approvals

5.4 Schedule

- Proposed design and permitting timeline as described in Section 4

5.5 Fee Proposal

Proposers must provide their fee in **one of the following formats:**

- **A fixed lump-sum fee, or**
- **A percentage of total construction cost (PREFERRED)**

The fee proposal shall clearly identify:

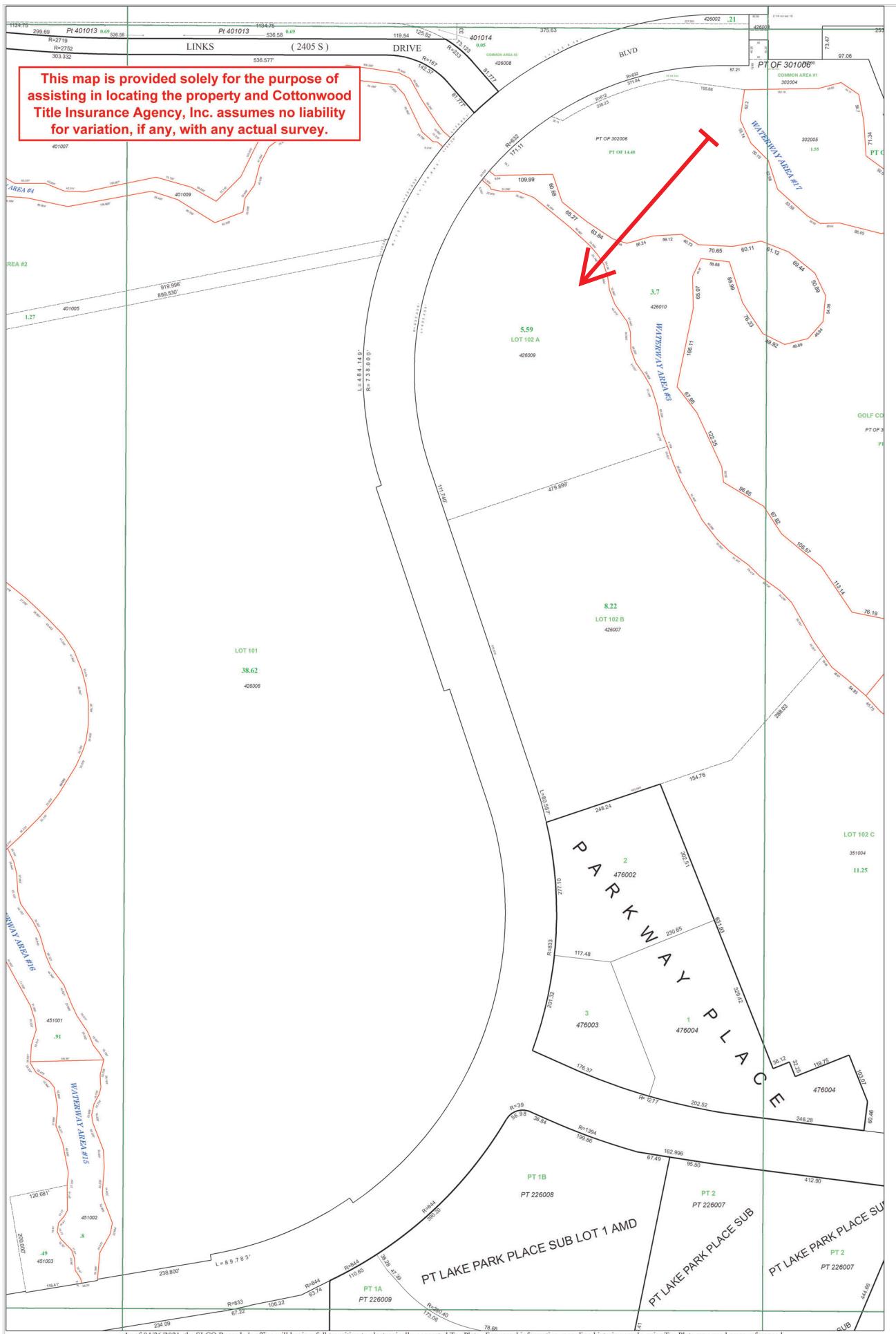
- What services are included in the fee
- Any assumptions or exclusions
- Hourly rates for additional services (if applicable)

6. Evaluation Criteria

Proposals will be evaluated in accordance with the Utah Procurement Code using the following criteria:

- Firm qualifications and experience
- Experience with similar educational facilities and USBE approvals
- Quality and feasibility of proposed approach and schedule
- Ability to meet the School's timeline
- Fee structure and overall value to the School

The School reserves the right to conduct interviews with one or more proposers.


7. Conditions and Reservations

The School reserves the right to:

- Reject any or all proposals
- Waive minor irregularities in proposals
- Cancel this RFP at any time
- Negotiate with the selected proposer

Submission of a proposal constitutes acceptance of the terms and conditions set forth in this RFP.

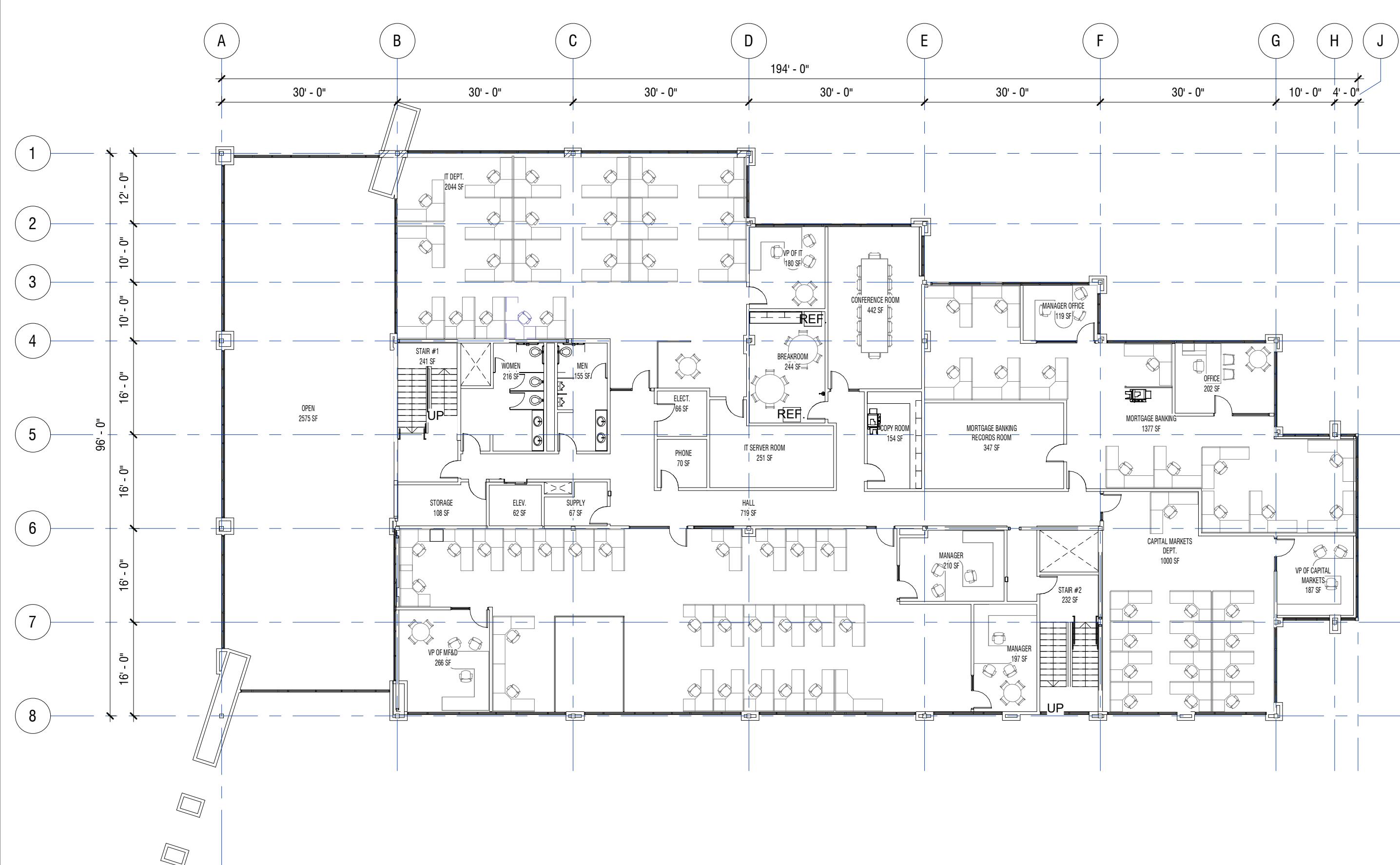
Prepared and published by
Salt Lake County Recorder
Randy Hobbs
2001 State Street #N1-600
Salt Lake City, Utah 84190
385-468-8145
recorder.slc.org

E 1/2 SE 1/4 Sec 19 T1S R1W
SALT LAKE COUNTY, UTAH

9/26/2022

Scale 1"=100'
0 100' 200'
Feet
15-19-42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Area Section Page

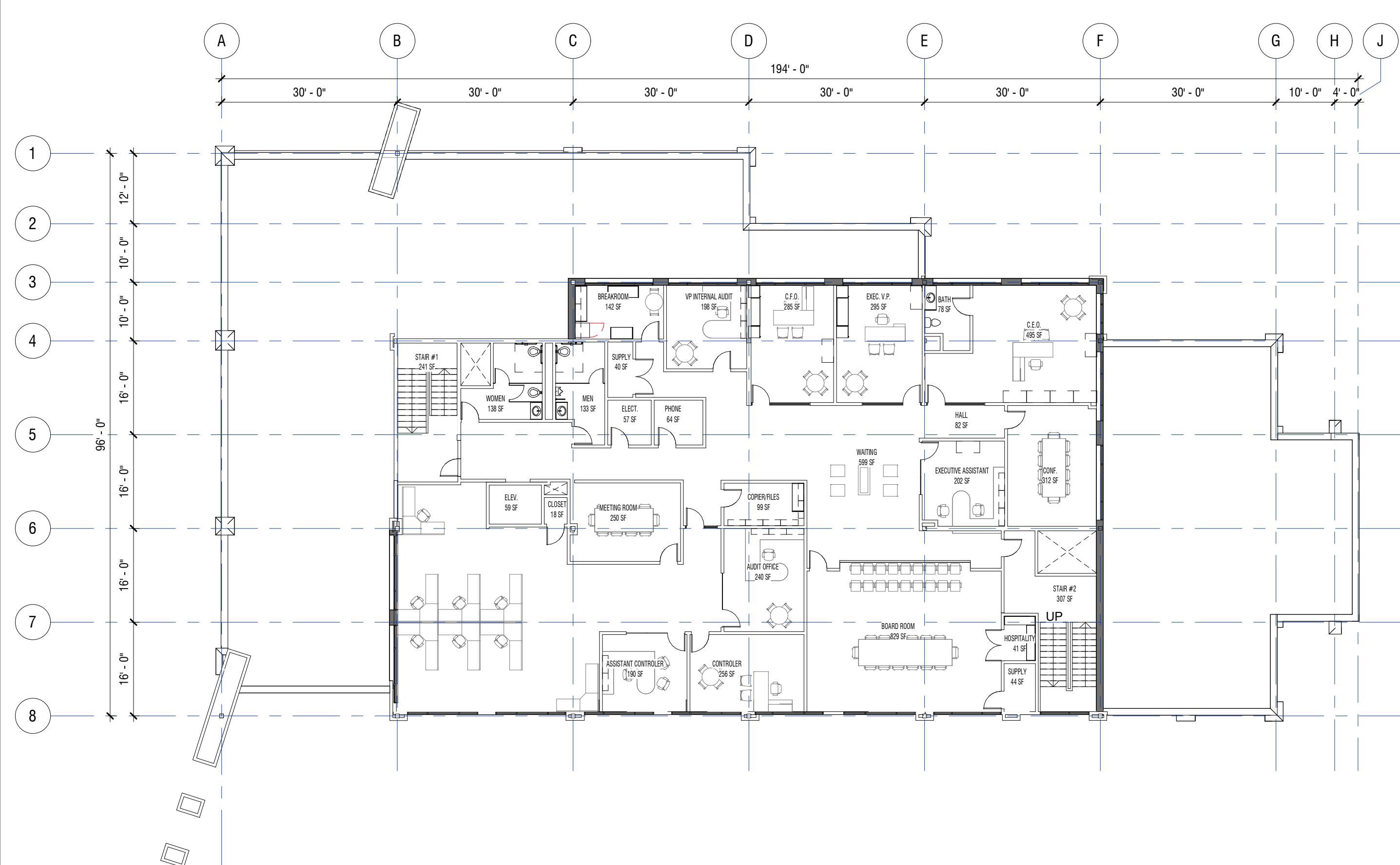
LEVEL GROSS SQUARE FOOTAGE: 14,855 GSF


1

LEVEL 1 - EXISTING PLAN

1/16" = 1'-0"

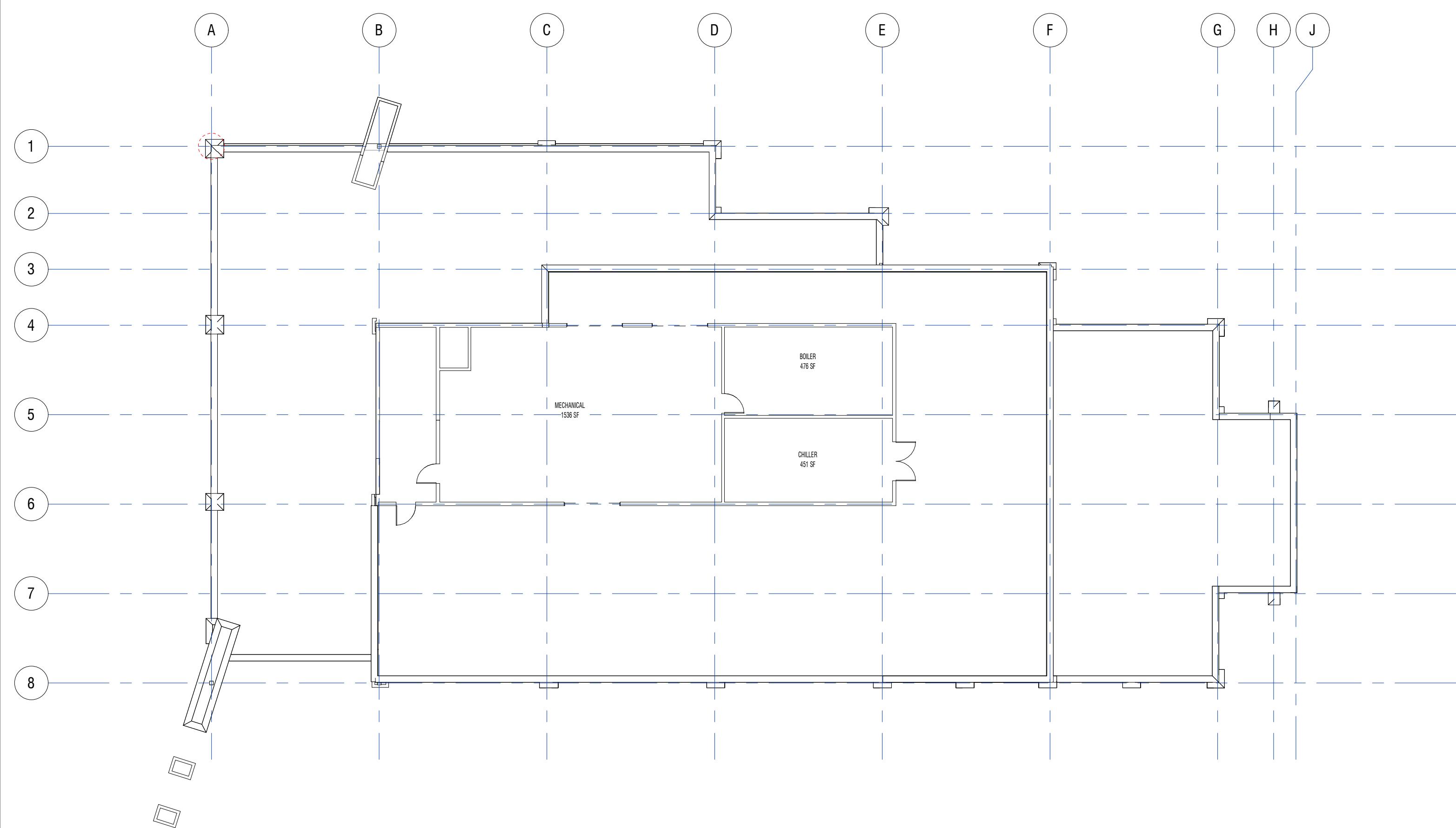
0 5 10 15 20 25


LEVEL GROSS SQUARE FOOTAGE: 12,606 GSF

1 LEVEL 2 - EXISTING PLAN

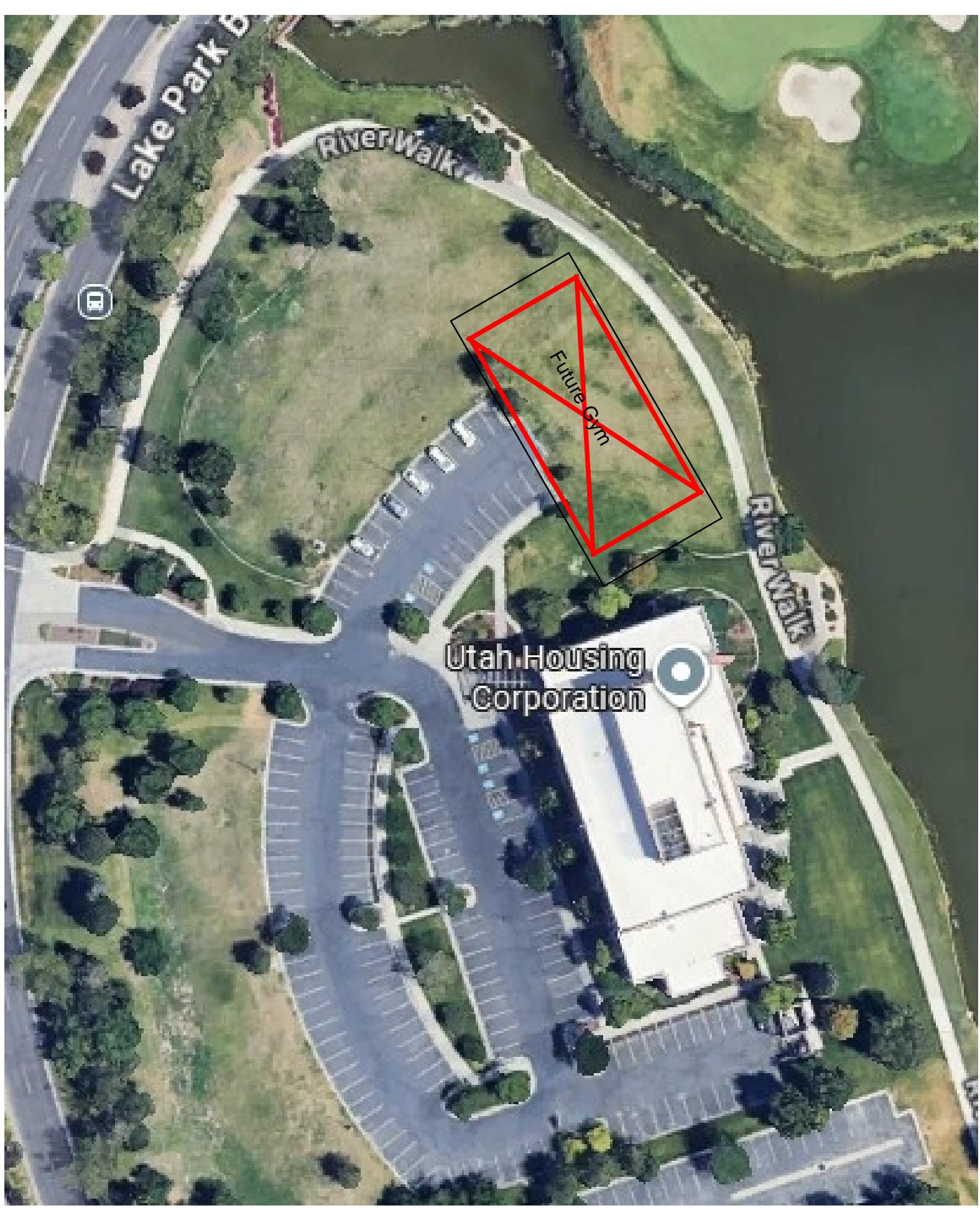
1/16" = 1'-0"

0 5 10 15 20 25


1

LEVEL 3 - EXISTING PLAN

1/16" = 1'-0"


0 5 10 15 20 25

LEVEL GROSS SQUARE FOOTAGE: 2,869 GSF

1 **MECHANICAL PENTHOUSE - EXISTING**
1/16" = 1'-0"

Roughly 9,000 sq ft addition which will house a gym/cafeteria and some classroom space. Style colors to coordinate with the existing building. Exact placement to be determined, but it is expected to be North of the current building.

STRUCTURAL CIVIL SURVEY

To: Mana Academy
Re: Building Review
Location: 2479 Lake Park Blvd., West Valley City, Utah

To whom it may concern,

Silverpeak Engineering was retained to perform a limited structural review of the existing office building at the location noted above for the sole purpose of evaluating whether a proposed change in occupancy classification may result in increased code-required design demands that would necessitate structural modifications.

Copies of the original structural drawings were provided to Silverpeak Engineering. The original structural engineering was prepared by ARW Engineers. A site observation was performed to visually verify, to the extent observable without destructive investigation, that the structure was generally constructed in accordance with the original structural drawings. Based on visible conditions only, the building appeared to be consistent with the original structural engineering. The most recent structural drawings made available to Silverpeak Engineering are dated April 25, 2004.

The building consists of three stories with a partial penthouse at the roof level. The structural system comprises steel framing with concrete slabs on metal deck at the floors and metal deck at the roof. The main force-resisting system (MFRS) consists of special concentrically braced frames.

A comparison of the original design criteria and the currently applicable design criteria associated with the proposed change in occupancy is summarized in the table below.

	Existing Design Criteria (2003 IBC)	Current Design Criteria (2021 IBC)
Seismic Design Category	D	D
Risk Category	II	III
Seismic Importance Factor	1.0	1.25
Basic Wind Speed (mph) (ASD)	90	82
Spectral Response (Sds)		
Default (D) Mapped Site Specific Ground Motion Hazard Analysis (GMHA)	0.9g N/A N/A	1.1g 1.0g Requires Geotech Evaluation
Live Loads (PSF)	50 + 20 (Partition) = 70 80 (Corridors)	50 + 20 (Partition) = 70 80 (Corridors)
Snow importance factor	1.0	1.1
Roof Snow Loads (PSF)	30	22

Based on this comparison, seismic loading is the only design parameter that exceeds the original design criteria. When the increase in mapped seismic design parameters is combined with the

STRUCTURAL CIVIL SURVEY

higher seismic importance factor associated with the proposed occupancy, the resulting seismic design forces acting on the MFRS increase by approximately 52 percent relative to the original design. If site-specific seismic parameters developed by a qualified geotechnical engineer are used in lieu of mapped values, the increase in seismic demand may be reduced to approximately 39 percent.

A site response analysis or Ground Motion Hazard Analysis (GMHA) performed by a qualified geotechnical engineer may further reduce the seismic design accelerations. No representation is made that the results of a site response analysis or GMHA would reduce the seismic demands sufficiently to allow the existing structural system to remain without modification.

If a site response analysis or GMHA is not performed, or if the resulting seismic demands remain greater than those used in the original design, modifications to the existing braced frame system will be required. Based on a preliminary evaluation, anticipated modifications may include strengthening of select beams, increases in footing uplift capacity, and upgrades to existing connections for in-plane and out-of-plane forces. Beam deficiencies are anticipated to be governed by combined axial and flexural demands associated with increased seismic forces. Beam strengthening may be accomplished through the addition of stiffness and/or bracing.

In addition, increased uplift forces at the braced frame foundations are anticipated. Preliminary estimates indicate that additional uplift resistance on the order of approximately 30 to 60 kips per affected footing may be required. One potential method to provide this additional capacity is the installation of helical piers at existing footing locations.

The attached drawings identify the braced frame locations and highlight structural members that are anticipated to require modification. These drawings are provided for conceptual purposes only and do not represent final design. Refer to the additional checklist for additional compliance checks and information.

This report is intended solely for the stated purpose and shall not be relied upon for construction, permitting, or assessment of overall structural adequacy. Additional investigation, detailed analysis, and structural design by qualified professionals will be required prior to implementation of any occupancy change or structural modifications.

If you should have any questions, please feel free to call.

Sincerely,

Abe Carlsruh
Silverpeak Engineering

Reviewed By: Josh Jensen

STRUCTURAL CIVIL SURVEY

Checklist		
Compliance	Description	Comments
Seismic-Force Resisting System		
Compliant	REDUNDANCY: The number of lines of braced frames in each principal direction is greater than or equal to 2.	(2) braced frames in each orthogonal direction.
Compliant	BRACE AXIAL STRESS CHECK: The axial stress in the diagonals is less than the code design capacity.	Maximum design axial diagonal stress is at 80% capacity given worst case seismic criteria.
Compliant	CONNECTION STRENGTH: All the brace connections develop the buckling capacity of the diagonals.	The worst case brace connections are at 65% capacity.
Compliant	COMPACT MEMBERS: All brace elements meet compact section requirements in accordance with AISC 360, Table B4.1.	All braces are compact per AISC 360, Table B4.1
N/A	K-BRACING: The bracing system does not include K-braced bays.	K-Bracing does not exist in this building.
Unknown	COLUMN SPLICES: All column splice details located in braced frames develop 50% of the tensile strength of the column.	The column splices are not visible. The original construction documents do not specify how these columns are spliced. Further observation may be required during construction.

STRUCTURAL CIVIL SURVEY

Compliant	SLENDERNESS OF DIAGONALS: All diagonal elements required to carry compression have KI/r ratio less than 200.	Per AISC 360 Table 4-4, all braces are have a KI/r less than 200.
Compliant	CONNECTION STRENGTH: All the brace connections develop the yield capacity of the diagonals.	The worst case brace connections are at 65% capacity.
Non-Compliant	CHEVRON BRACING: Beams in chevron, or V-braced, bays are capable of resisting the vertical load resulting from the simultaneous yielding and buckling of the brace pairs.	Various beams are overstressed in combined axial and flexure as noted in the report given seismic accelerations that exceed the original design criteria.
Compliant	CONCENTRICALLY BRACED FRAME JOINTS: All the diagonal braces frame into the beam-column joints concentrically.	
Diaphragms		
Non-Compliant	OPENINGS AT FRAMES: Diaphragm openings immediately adjacent to the braced frames extend less than 25% of the frame length	The frame at grid 5 includes a stairway opening that spans 1/3 of the frame. The diaphragm transfers load to the beam at this frame through welded studs. The diaphragm force is more than adequately transferred to the beam through the studs.
Compliant	CROSS TIES: There are continuous cross ties between diaphragm chords.	Cross ties were visible during the site observation. Not verified on the whole building.

STRUCTURAL CIVIL SURVEY

N/A	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered.	
N/A	SPANS: All wood diaphragms with spans greater than 24 ft. (7.3 m) consist of wood structural panels or diagonal sheathing.	
N/A	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and aspect ratios less than or equal to 4-to-1.	
Compliant	OTHER DIAPHRAGMS: Diaphragms do not consist of a system other than wood, metal deck, concrete or horizontal bracing.	
Compliant (assumed)	STEEL COLUMNS: The columns in seismic-force resisting frames are anchored to the building foundation.	This was not visible, however it is assumed based on the original drawings.
Compliant	TRANSFER TO STEEL FRAMES: Diaphragms are connected for transfer of seismic forces to the steel frames, and the connections are able to develop the lesser of the strength of the frames or the diaphragms.	Per the plans, the diaphragm transfers to the steel frames via welded studs.

STRUCTURAL CIVIL SURVEY

Compliant	OUT-OF-PLAN BRACING: Braced frame connections that are attached to beam bottom flanges located away from beam-column joints are braced out of plan at the bottom flange of the beams.	This was not visible during the site observation, however detail 17/S202 of the original drawings show bracing at these locations.
Compliant	DIAPHRAGM SHEAR: Shear loads meet or exceed design capacities.	The diaphragm shear is at 43% capacity with the worst case seismic loading.

